Gerbang Logika Æ
blok dasar untuk membentuk rangkaian elektronika digital
¾ Sebuah gerbang logika
mempunyai satu terminal output dan satu atau lebih terminal input
¾ Output-outputnya bisa
bernilai HIGH (1) atau LOW (0) tergantung dari level-level digital pada
terminal inputnya.
¾ Ada 7 gerbang logika dasar : AND, OR, NOT, NAND,
NOR, Ex-OR, Ex-NOR
|
|
Gerbang
|
output
|
||
input
|
|||||
|
|
||||
|
|
||||
logika
|
|
|
|||
|
|
|
|
||
|
|
|
|
|
|
Input A
|
Output X
|
|
|
|
||
|
Input B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Simbol gerbang logika AND
Operasi AND :
• Jika Input A AND B keduanya HIGH, maka output X akan HIGH
• Jika Input A atau B salah
satu atau keduanya LOW maka output X
akan LOW
|
|
INPUT
|
Output
|
|
Tabel Kebenaran
|
A
|
|
B
|
X
|
0
|
|
0
|
0
|
|
gerbang AND – 2 input
|
|
|
|
|
0
|
|
1
|
0
|
|
|
1
|
|
0
|
0
|
|
1
|
|
1
|
1
|
Gerbang AND dengan switch Transistor
A
B X = A.B.C.D
C
D
AND – 4 input
|
|
INPUT
|
|
Output
|
|
A
|
B
|
|
C
|
D
|
X
|
0
|
0
|
|
0
|
0
|
0
|
0
|
0
|
|
0
|
1
|
0
|
0
|
0
|
|
1
|
0
|
0
|
0
|
0
|
|
1
|
1
|
0
|
0
|
1
|
|
0
|
0
|
0
|
0
|
1
|
|
0
|
1
|
0
|
0
|
1
|
|
1
|
0
|
0
|
0
|
1
|
|
1
|
1
|
0
|
1
|
0
|
|
0
|
0
|
0
|
1
|
0
|
|
0
|
1
|
0
|
1
|
0
|
|
1
|
0
|
0
|
1
|
0
|
|
1
|
1
|
0
|
1
|
1
|
|
0
|
0
|
0
|
1
|
1
|
|
0
|
1
|
0
|
1
|
1
|
|
1
|
0
|
0
|
1
|
1
|
|
1
|
1
|
1
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
|
|
|
|
|
|
D
|
|
|
|
|
|
|
|
|
|
E
|
|
X
= A.B.C.D.E.F.G.H
|
|
|
|
|
||
|
F
|
|
|
|
|
|
|
||
|
G
|
|
|
|
|
|
|
|
|
|
H
|
|
AND – 8 input
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tabel Kebenaran AND-4 input
Input A Output X
Input B
Simbol gerbang logika OR
Operasi OR :
• Jika Input A OR B atau keduanya HIGH, maka output X akan HIGH
• Jika Input A dan B keduanya LOW maka output X akan LOW
|
INPUT
|
|
Output
|
|
|
A
|
|
B
|
X
|
Tabel Kebenaran
|
0
|
|
0
|
0
|
0
|
|
1
|
1
|
|
gerbang OR – 2 input
|
1
|
|
0
|
1
|
1
|
|
1
|
1
|
|
|
|
Gerbang OR dengan switch Transistor
A
B X
= A+B+C
C
OR – 3 input
Tabel Kebenaran OR-3 input
|
INPUT
|
|
Output
|
A
|
B
|
C
|
X
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E
|
|
|
|
|
|
|
|
X
= A+B+C+D+E+F+G+H
|
|
|||
|
|
|
||||
|
F
|
|
|
|||
|
|
|
||||
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H
|
|
OR – 8 input
|
|
||
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Input A Output X
Simbol gerbang logika NOT
Operasi NOT :
• Jika Input A HIGH, maka output X akan LOW
• Jika Input A LOW, maka output X akan HIGH
X =
|
A
|
|
|
|
|
|
|
INPUT
|
Output
|
Tabel Kebenaran
|
|
A
|
X
|
|
|
0
|
1
|
||
gerbang NOT / INVERTER
|
|
|||
|
1
|
0
|
||
|
|
|
Input A
|
Output X
|
Input
A
|
Output X
|
Input B
|
ATAU Input
B
|
Simbol gerbang logika NAND
Operasi NAND :
• Merupakan Inversi (kebalikan) dari operasi AND
• Jika Input A AND B keduanya HIGH, maka output X akan LOW
• Jika Input A atau B atau keduanya LOW, maka output X akan HIGH
Tabel Kebenaran gerbang NAND
|
INPUT
|
Output
|
|
|
|
A
|
|
B
|
X
|
|
|
0
|
|
0
|
1
|
X= A.B
|
|
0
|
|
1
|
1
|
||
|
|
|
|||
1
|
|
0
|
1
|
|
|
1
|
|
1
|
0
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
C
|
|
|
|
|
|
|
|
B
|
X = A.B.C
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
D
|
|
|
|
|
|
||||
|
C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X = A.B.C.D.E.F.G.H
|
|
|||
|
NAND – 3 input
|
|
|
|
|
|
|
F
|
|
|
|||
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
H
|
|
NAND – 8 input
|
|
||
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tabel Kebenaran NAND-3 input
|
INPUT
|
|
Output
|
A
|
B
|
C
|
X
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
Input A
|
Output X
|
Input
A
|
Output X
|
Input B
|
ATAU Input
B
|
Simbol gerbang logika NOR
Operasi NOR :
• Merupakan Inversi (kebalikan) dari operasi OR
• Jika Input A dan B keduanya LOW, maka output X akan HIGH
• Jika Input A OR B salah
satu atau keduanya HIGH, maka output
X akan LOW
Tabel Kebenaran gerbang NOR
INPUT
|
|
Output
|
|
|
|
A
|
|
B
|
X
|
|
|
|
X=A+B
|
||||
0
|
|
0
|
1
|
||
0
|
|
1
|
0
|
|
|
1
|
|
0
|
0
|
|
|
1
|
|
1
|
0
|
|
|
Input A Output X
Input B
Simbol gerbang logika Ex-OR
Operasi Ex-OR :
• Ex-OR adalah kependekan dari Exclusive OR
• Jika salah satu dari kedua
inputnya HIGH (bukan kedua-duanya), maka output X akan HIGH
• Jika kedua inputnya
bernilai LOW semua atau HIGH semua, maka output X akan LOW
INPUT
|
|
OUTPUT
|
Persamaan
Logika Ex-OR
|
|
A
|
|
B
|
X
|
|
|
|
|
|
X = A + B
|
0
|
|
0
|
0
|
|
0
|
|
1
|
1
|
|
1
|
|
0
|
1
|
|
1
|
|
1
|
0
|
|
Berdasarkan Tabel Kebenaran di atas (yang bernilai output = 1),
Ex-OR dapat disusun dari gerbang dasar : AND, OR dan NOT Persamaan EX-OR
(dari AND, OR dan NOT) :
X
= AB + AB
A
B X A X
B
Gerbang Ex-OR dari AND, OR, NOT Simbol logika Ex-OR
Input A Output X
Input B
Simbol gerbang logika Ex-NOR
Operasi Ex-NOR :
• Ex-NOR merupakan kebalikan dari Ex-OR
• Jika salah satu dari kedua
inputnya HIGH (bukan kedua-duanya), maka output X akan LOW
• Jika kedua inputnya
bernilai LOW semua atau HIGH semua, maka output X akan HIGH
|
INPUT
|
OUTPUT
|
Persamaan Logika
Ex-NOR
|
|
A
|
|
B
|
X
|
|
0
|
|
0
|
1
|
X
= A + B
|
0
|
|
1
|
0
|
|
|
|
|||
1
|
|
0
|
0
|
|
1
|
|
1
|
1
|
|
Berdasarkan Tabel Kebenaran di atas (yang bernilai output = 1),
Ex-NOR dapat disusun dari gerbang dasar : AND, OR dan NOT Persamaan EX-NOR
(dari AND, OR dan NOT) :
X
= AB + AB
A
B X A X
B
Gerbang Ex-NOR dari AND, OR, NOT Simbol logika Ex-NOR
No
|
NAMA
|
TIPE IC
|
Simbol
Logika
|
Persamaan
|
Tabel Kebenaran
|
|||||||||||||||||
|
|
|
A
|
|
|
|
|
|
|
|
|
INPUT
|
|
|
Output
|
|
|
|||||
1
|
AND
|
7408
|
X
|
X=A.B
|
|
|
A
|
|
|
|
B
|
|
|
X
|
|
|
||||||
B
|
|
0
|
|
|
1
|
|
0
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
0
|
|
|
0
|
|
0
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
0
|
|
0
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
|
1
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
A
|
|
|
|
|
|
|
|
|
INPUT
|
|
|
Output
|
|||||||
2
|
OR
|
7432
|
X
|
X=A+B
|
|
|
A
|
|
|
|
B
|
|
|
X
|
|
|
||||||
B
|
|
0
|
|
|
1
|
|
1
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
0
|
|
|
0
|
|
0
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
0
|
|
1
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
|
1
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
3
|
NOT
|
7404
|
A
|
X
|
X=A
|
|
|
|
|
|
|
INPUT
|
Output
|
|||||||||
|
|
|
|
|
|
0
|
1
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
|
|
X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
0
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
X
|
|
|
|
|
|
|
|
INPUT
|
|
|
Output
|
||||||||
4
|
NAND
|
|
|
|
|
|
|
|
A
|
|
|
|
B
|
|
|
X
|
|
|||||
7400
|
X=A.B
|
|
|
|
|
|
|
|
|
|||||||||||||
B
|
|
0
|
|
1
|
|
1
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
0
|
|
0
|
|
1
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
1
|
|
0
|
|
1
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
1
|
|
1
|
|
0
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
No
|
NAMA
|
TIPE IC
|
Simbol
Logika
|
Persamaan
|
Tabel
Kebenaran
|
|||||||||||||||||||||
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X
|
|
|
|
|
|
|
|
INPUT
|
|
|
|
Output
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
B
|
|
|
X
|
|
|
|
||||||
5
|
NOR
|
7402
|
X=A+B
|
|||||||||||||||||||||||
B
|
|
|
|
|
|
|
|
0
|
|
|
1
|
0
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
|
|
|
0
|
1
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
0
|
0
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
0
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
X
|
|
|
|
|
|
|
|
INPUT
|
|
|
|
OUTPUT
|
|
|
||||||||
6
|
Ex-OR
|
7486
|
|
X=A + B
|
|
|
A
|
|
B
|
|
|
X
|
|
|
||||||||||||
|
|
0
|
|
|
1
|
|
1
|
|
|
|
||||||||||||||||
B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
|
|
|
0
|
|
0
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
0
|
|
1
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
|
0
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
A
|
|
X
|
|
|
|
|
|
|
|
INPUT
|
|
|
|
OUTPUT
|
|
||||||||
7
|
Ex-NOR
|
|
|
|
|
|
|
|
|
|
A
|
|
B
|
|
|
X
|
|
|||||||||
|
|
X=A + B
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
0
|
|
|
0
|
|
1
|
|
|
|
||||||||||||||||
|
B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
0
|
|
|
1
|
|
0
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
0
|
|
0
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
|
1
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cara
penganalisaan response output terhadap kombinasi input-inputnya pada periode
waktu tertentu,
Cara penganalisaaan yang lain adalah dengan Tabel Kebenaran
Peralatan yang digunakan disebut : Timing Diagram (Diagram pe-waktu-an).
Bentuk Timing Diagram :
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
A
|
|
|
|
|
|
INPUT
|
0
|
|
|
|
|
|
B 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1
|
|
|
|
|
|
OUTPUT
|
X
|
|
|
|
|
|
|
0t0
|
t1
|
t2
|
t3
|
t4
|
t5
|
Jawab :
A
B
X
1
0
1
0
1
0
Jawab :
A
B
X
1
0
1
0
1
0
1.
Sebuah input data mempunyai urutan : 101110010. Gambarkan
bentuk gelombang dari data input tersebut dalam representasi sinyal digital.
2.
Sebutkan
3 jenis aplikasi yang menggunakan teknologi digital.
3.
Buat
Tabel Kebenaran untuk gerbang AND-3 input berikut ini :
A
|
X
|
B
|
|
C
|
|
A
B X
C
D
5. Buat Timing Diagram untuk output X dari gerbang OR-3 input
berikut ini :
A A
B X
C
B
C
1
0
1
0
1
0
Tidak ada komentar:
Posting Komentar